Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120817, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593740

RESUMO

Spartina alterniflora invasion is considered a critical event affecting sediment phosphorus (P) availability and stock. However, P retention and microbial phosphate solubilization in the sediments invaded with or without S. alterniflora have not been fully investigated. In this study, a sequential fractionation method and high-throughput sequencing were used to analyze P transformation and the underlying microbial mechanisms in the sediments of no plant (NP) zone, transition (T) zone, and plant (P) zone. Results showed that except for organic phosphate (OP), total phosphate (TP), inorganic phosphate (IP), and available phosphate (AP) all followed a significant decrease trend from the NP site to the T site, and to the P site. The vertical decrease of TP, IP, and AP was also observed with an increase in soil depth. Among the six IP fractions, Fe-P, Oc-P, and Ca10-P were the predominant forms, while the presence of S. alterniflora resulted in an obvious P depletion except for Ca8-P and Al-P. Although S. alterniflora invasion did not significantly alter the alpha diversity of phosphate-solubilizing bacteria (PSB) harboring phoD gene, several PSB belonging to p_Proteobacteria, p_Planctomycetes, and p_Cyanobacteriota showed close correlations with P speciation and IP fractions. Further correlation analysis revealed that the reduced soil pH, soil TN and soil EC, and the increased soil TOC mediated by the invasion of S. alterniflora also significantly correlated to these PSB. Overall, this study elucidates the linkage between PSB and P speciation and provides new insights into understanding P retention and microbial P transformation in the coastal sediment invaded by S. alterniflora.

3.
ACS Omega ; 9(15): 17423-17431, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645324

RESUMO

As recurrent and metastatic nasopharyngeal carcinoma (NPC) is the most common cause of death among patients with NPC, there is an urgent clinical need for the development of precision diagnosis to guide personalized treatment. Recent emerging evidence substantiates the increased expression of transferrin receptor 1 (also known as cluster of differentiation 71, CD71) within tumor tissues and the inherent targeting capability of natural heavy-chain ferritin (HFn) toward CD71. This study aimed to synthesize and assess a radiotracer ([64Cu]Cu-NOTA-HFn) designed to target CD71 for positron emission tomography (PET) imaging in an NPC tumor-bearing mouse model. The entire radiolabeling process of [64Cu]Cu-NOTA-HFn was completed within 15 min with high yield (>98.5%) and high molar activity (72.96 ± 21.33 GBq/µmol). The in vitro solubility and stability experiments indicated that [64Cu]Cu-NOTA-HFn had a high water solubility (log P = -2.42 ± 0.52, n = 6) and good stability in phosphate-buffered saline (PBS) for up to 48 h. The cell saturation binding assay indicated that [64Cu]Cu-NOTA-HFn had a nanomolar affinity (Kd = 10.9 ± 6.1 nM) for CD71-overexpressing C666-1 cells. To test the target engagement in vivo, prolonged-time PET imaging was performed at 1, 6, 12, 24, and 36 h postinjection (p.i.) of [64Cu]Cu-NOTA-HFn to C666-1 NPC tumor-bearing mice. The C666-1 tumors could be visualized by [64Cu]Cu-NOTA-HFn and blocked by nonradiolabeled HFn. PET imaging quantitative analysis demonstrated that the uptake of [64Cu]Cu-NOTA-HFn in C666-1 tumors peaked at 6 h p.i. and the best radioactive tumor-to-muscle ratio was 10.53 ± 3.11 (n = 3). Ex vivo biodistribution assay at 6 h p.i. showed that the tumor uptakes were 1.43 ± 0.23%ID/g in the nonblock group and 0.92 ± 0.2%ID/g in the block group (n = 3, p < 0.05). Immunohistochemistry and immunofluorescence staining confirmed positive expression of CD71 and the uptake of HFn in C666-1 tumor tissues. In conclusion, our experiments demonstrated that [64Cu]Cu-NOTA-HFn possesses a very high target engagement for CD71-positive NPC tumors and provided a fundamental basis for further clinical translation.

4.
Mol Genet Genomics ; 299(1): 36, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492113

RESUMO

Previous studies have observed relationships between pancreatitis and gut microbiota; however, specific changes in gut microbiota abundance and underlying mechanisms in pancreatitis remain unknown. Metabolites are important for gut microbiota to fulfil their biological functions, and changes in the metabolic and immune environments are closely linked to changes in microbiota abundance. We aimed to clarify the mechanisms of gut-pancreas interactions and explore the possible role of metabolites and the immune system. To this end, we conducted two-sample Mendelian randomisation (MR) analysis to evaluate the casual links between four different types of pancreatitis and gut microbiota, metabolites, and inflammatory cytokines. A two-step MR analysis was conducted to further evaluate the probable mediating pathways involving metabolites and inflammatory cytokines in the causal relationship between pancreatitis and gut microbiota. In total, six potential mediators were identified in the causal relationship between pancreatitis and gut microbiota. Nineteen species of gut microbiota and seven inflammatory cytokines were genetically associated with the four types of pancreatitis. Metabolites involved in glucose and amino acid metabolisms were genetically associated with chronic pancreatitis, and those involved in lipid metabolism were genetically associated with acute pancreatitis. Our study identified alterations in the gut microbiota, metabolites, and inflammatory cytokines in pancreatitis at the genetic level and found six potential mediators of the pancreas-gut axis, which may provide insights into the precise diagnosis of pancreatitis and treatment interventions for gut microbiota to prevent the exacerbation of pancreatitis. Future studies could elucidate the mechanism underlying the association between pancreatitis and the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Microbiota , Pancreatite , Humanos , Doença Aguda , Citocinas/genética , Microbioma Gastrointestinal/genética , Estudo de Associação Genômica Ampla , Pancreatite/genética , Análise da Randomização Mendeliana
5.
Schizophr Res ; 264: 122-129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128343

RESUMO

BACKGROUND: Several studies have indicated that the plasma concentration of risperidone increases 3-5-fold during the acute-phase reaction (APR) of inflammation or infection. Psychiatric symptoms are present or deteriorate when the dose is lowered; thus, the complex effects of inflammation on the pharmacokinetics of risperidone need to be examined. METHODS: We established a APR model in rabbits induced by lipopolysaccharide (LPS) and studied the effect of APR on pharmacokinetics, distribution and disposition of risperidone in vivo and in vitro. RESULTS: Following intramuscular administration, the plasma exposures for risperidone and its active metabolite (9-hydroxyrisperidone) were increased approximately 6-fold on day 2 of inflammation. The exposure values did not change between day 2 and 5 of inflammation, nor did the metabolite-to-parent ratio before and during inflammation. Following oral administration, the increase of risperidone exposure was twice as high as that following intramuscular administration during APR. However, the concentration of risperidone and 9-hydroxyrisperidone in brain tissue was similar between the inflammatory and control groups. Moreover, the plasma protein binding (PPB) of risperidone and 9-hydroxyrisperidone associated with inflammation were all increased to >99 %. In addition, risperidone and 9-hydroxyrisperidone were not substrates of the key transporters, OATP1B3, OCT2, OAT3, MATE-1, or MATE-2 K. The expression of progesterone X receptor and P-glycoprotein was inhibited by LPS. CONCLUSION: During APR, reduced expression of P-glycoprotein and increased PPB were responsible for increased exposure in plasma, while maintaining stable concentrations in the brain, and risperidone does not need to be dose-adjusted so as to achieve psychopharmacological outcomes.


Assuntos
Antipsicóticos , Risperidona , Animais , Coelhos , Palmitato de Paliperidona , Isoxazóis/farmacocinética , Pirimidinas/farmacocinética , Reação de Fase Aguda/induzido quimicamente , Lipopolissacarídeos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP
7.
Aging (Albany NY) ; 15(22): 13312-13328, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38015710

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT) and aberrant energy metabolism are pivotal biological processes in tumor progression, significantly impacting tumor prognosis. However, the relationship between EMT, energy metabolism, and the immune microenvironment in bladder urothelial carcinoma (BLCA) remains inadequately understood. METHODS: Bladder cancer samples from The Cancer Genome Atlas were categorized into two groups via clustering analysis to elucidate disparities in expression, prognostic significance, and immune infiltration of genes associated with EMT and energy metabolism between these groups. Key genes associated with EMT and energy metabolism in BLCA were identified through Cox multifactorial regression analysis, immune infiltration analysis, etc. Subsequently, their prognostic significance in BLCA was validated. RESULTS: Cluster analysis revealed significant differences in the expression of genes associated with EMT and energy metabolism between the two groups. Group 2 exhibited significantly improved overall survival and progression-free survival compared to Group 1. Chondroitin sulfate proteoglycan 4 (CSPG4) emerged as the most critical gene associated with EMT, energy metabolism, prognosis, and immune infiltration in BLCA. Immunohistochemical assays demonstrated differential expression of CSPG4 in bladder tumors and normal bladder tissues, with high CSPG4 expression correlating with a poorer BLCA prognosis. Furthermore, CSPG4 exhibited an association with the immune checkpoint molecule programmed death-1 (PD1) in BLCA. CONCLUSIONS: EMT and energy metabolism exert pivotal influences on the immune microenvironment in BLCA. CSPG4 holds promise as a prognostic biomarker for patients with BLCA, offering valuable insights into potential immunotherapeutic strategies for this patient population.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células de Transição/genética , Neoplasias da Bexiga Urinária/genética , Bexiga Urinária , Transição Epitelial-Mesenquimal/genética , Prognóstico , Metabolismo Energético/genética , Microambiente Tumoral/genética
8.
Aging (Albany NY) ; 15(15): 7408-7423, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37433010

RESUMO

Patients with advanced bladder cancer gradually become less sensitive to chemotherapeutic agents, leading to tumor recurrence. Initiating the senescence program in solid tumors may be an important means of improving short-term drug sensitivity. The important role of c-Myc in bladder cancer cell senescence was determined using bioinformatics methods. The response to cisplatin chemotherapy in bladder cancer sample was analyzed according to the Genomics of Drug Sensitivity in Cancer database. Cell Counting Kit-8 assay, clone formation assay, and senescence-associated ß-galactosidase staining were used to assess bladder cancer cell growth, senescence, and sensitivity to cisplatin, respectively. Western blot and immunoprecipitation were performed to understand the regulation of p21 by c-Myc/HSP90B1. Bioinformatic analysis showed that c-Myc, a cellular senescence gene, was significantly associated with bladder cancer prognosis and sensitivity to cisplatin chemotherapy. c-Myc and HSP90B1 expression were highly correlated in bladder cancer. Reducing the level of c-Myc significantly inhibited bladder cancer cell proliferation, promoted cellular senescence, and enhanced cisplatin chemosensitivity. Immunoprecipitation assays confirmed that HSP90B1 interacted with c-Myc. Western blot analysis showed that reducing the level of HSP90B1 could redeem the p21 overexpression caused by c-Myc overexpression. Further studies showed that reducing HSP90B1 expression could alleviate the rapid growth and accelerate cellular senescence of bladder cancer cells caused by c-Myc overexpression, and that reducing HSP90B1 levels could also improve cisplatin sensitivity in bladder cancer cells. HSP90B1/c-Myc interaction regulates the p21 signaling pathway, which affects cisplatin chemosensitivity by modulating bladder cancer cell senescence.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Recidiva Local de Neoplasia/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Proliferação de Células/genética , Senescência Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
9.
Eur J Nucl Med Mol Imaging ; 50(12): 3589-3601, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37466648

RESUMO

PURPOSE: Ankylosing spondylitis (AS) is a chronic inflammatory disease of the axial spine; however, the quantitative detection of inflammation in AS remains a challenge in clinical settings. We aimed to investigate the feasibility of using a specific P2X7R-targeting 18F-labeled tracer [18F]GSK1482160 for positron emission tomography (PET) imaging and the quantification of AS. METHODS: The radioligand [18F]GSK1482160 was obtained based on nucleophilic aliphatic substitution. Dynamic [18F]GSK1482160 and [18F]FDG micro-PET/CT imaging were performed on AS mice (n = 8) and age-matched controls (n = 8). Tracer kinetics modeling was performed using Logan's graphical arterial input function analysis to quantify the in vivo expression of P2X7R. The post-PET tissues were collected for hematoxylin-eosin (H&E), immunohistochemical (IHC), and immunofluorescence (IF) staining. RESULTS: [18F]GSK1482160 PET/CT imaging revealed that the specific binding in the ankle joint and sacroiliac joint (SIJ) of the AS at 8 weeks group (BPNDankle-AS-8W (non-displaceable binding potential of the ankle) 3.931 ± 0.74; BPND SIJ-AS-8W (BPBD of the SIJ) 4.225 ± 0.84) were significantly higher than the controls at 8 weeks group (BPNDankle-Ctr-8W 0.325 ± 0.15, BPNDSJJ-Ctr-8W 0.319 ± 0.17) respectively, and the AS at 14 weeks group (BPNDankle-AS-14W 12.212 ± 2.25; BPNDSJJ-AS-14W 13.389 ± 3.60) were significantly higher than the controls at 14 weeks group (BPNDankle-Ctr-14W 0.204 ± 0.16, BPNDSJJ-Ctr-14W 0.655 ± 0.35) respectively. The four groups had no significant difference in the [18F]FDG uptake of ankle and SIJ. IHC and IF staining revealed that the overexpression of P2X7R was colocalized with activated macrophages from the ankle synovium and spinal endplate in mice with AS, indicating that quantification of P2X7R may contribute to the understanding of the pathogenesis of inflammation in human AS. CONCLUSION: This study developed a novel P2X7R-targeting PET tracer [18F]GSK1482160 to detect the expression of P2X7R in AS mouse models and provided powerful non-invasive PET imaging and quantification for AS.

10.
Methods Mol Biol ; 2650: 123-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310628

RESUMO

Organoid cultures have been developed to model intestinal stem cell (ISC) function in self-renewal and differentiation. Upon differentiation, the first fate decision for ISC and early progenitors to make is between secretory (Paneth cell, goblet cell, enteroendocrine cell, or tuft cell) and absorptive (enterocyte and M cell) lineages. Using genetic and pharmacological approaches, in vivo studies in the past decade have revealed that Notch signaling functions as a binary switch for the secretory vs. absorptive lineage decision in adult intestine. Recent breakthroughs in organoid-based assays enable real-time observation of smaller-scale and higher-throughput experiments in vitro, which have begun contributing to new understandings of mechanistic principles underlying intestinal differentiation. In this chapter, we summarize the in vivo and in vitro tools for modulating Notch signaling and assess its impact on intestinal cell fate. We also provide example protocols of how to use intestinal organoids as functional assays to study Notch activity in intestinal lineage decisions.


Assuntos
Enterócitos , Intestinos , Adulto , Humanos , Células Enteroendócrinas , Bioensaio , Organoides
11.
ACS Chem Neurosci ; 14(11): 2183-2192, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37134001

RESUMO

In the past decades, translocator protein (TSPO) has been considered as an in vivo biomarker to measure the presence of neuroinflammatory reactions. In this study, expression of TSPO was quantified via [18F]DPA-714 positron emission tomography-magnetic resonance imaging (PET-MRI) to investigate the effects of microglial activation associated with motor behavioral impairments in the 6-hydroxydopamine (6-OHDA)-treated rodent model of Parkinson's disease (PD). [18F]FDG PET-MRI (for non-specific inflammation), [18F]D6-FP-(+)-DTBZ PET-MRI (for damaged dopaminergic (DA) neurons), post-PET immunofluorescence, and Pearson's correlation analyses were also performed. The time course of striatal [18F]DPA-714 binding ratio was elevated in 6-OHDA-treated rats during 1-3 weeks post-treatments, with peak TSPO binding in the 1st week. No difference between the bilateral striatum in [18F]FDG PET imaging were found. Moreover, an obvious correlation between [18F]DPA-714 SUVRR/L and rotation numbers was found (r = 0.434, *p = 0.049). No correlation between [18F]FDG SUVRR/L and rotation behavior was found. [18F]DPA-714 appeared to be a potential PET tracer for imaging the microglia-mediated neuroinflammation in the early stage of PD.


Assuntos
Microglia , Doença de Parkinson , Animais , Ratos , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Radioisótopos de Flúor/metabolismo , Fluordesoxiglucose F18/metabolismo , Imageamento por Ressonância Magnética , Microglia/metabolismo , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo , Tomografia por Emissão de Pósitrons/métodos
13.
Front Cell Infect Microbiol ; 13: 1129996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968108

RESUMO

Increasing attention is being paid to the unique roles gut microbes play in both physiological and pathological processes. Crohn's disease (CD) is a chronic, relapsing, inflammatory disease of the gastrointestinal tract with unknown etiology. Currently, gastrointestinal infection has been proposed as one initiating factor of CD. Yersinia enterocolitica, a zoonotic pathogen that exists widely in nature, is one of the most common bacteria causing acute infectious gastroenteritis, which displays clinical manifestations similar to CD. However, the specific role of Y. enterocolitica in CD is controversial. In this Review, we discuss the current knowledge on how Y. enterocolitica and derived microbial compounds may link to the pathogenesis of CD. We highlight examples of Y. enterocolitica-targeted interventions in the diagnosis and treatment of CD, and provide perspectives for future basic and translational investigations on this topic.


Assuntos
Doença de Crohn , Gastroenteropatias , Yersiniose , Yersinia enterocolitica , Humanos , Doença de Crohn/microbiologia , Yersiniose/diagnóstico , Yersiniose/microbiologia
14.
Biomed Res Int ; 2023: 9936087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36685670

RESUMO

Background: This study is aimed at constructing a nomogram to predict the risk of clinically significant prostate cancer (csPCa) based on the aggregate index of systemic inflammation (AISI) and prostate imaging-reporting and data system version (PIRADS) score. Methods: Clinical data on patients who had undergone initial prostate biopsy from January 2019 to December 2021 were collected. Patients were randomized in a 7 : 3 ratio to the training cohort and the validation cohort. Potential risk factors for csPCa were identified by univariable and multivariate logistic regression. Nomogram was conducted with these independent risk factors, and calibration curves, the receiver operating characteristic (ROC), and decision curve analysis (DCA) were employed to assess the nomogram's ability for prediction. Results: A total of 1219 patients were enrolled in this study. Multivariate logistic regression identified that age, AISI, total prostatic specific-antigen (tPSA), free to total PSA (f/tPSA), prostate volume (PV), and PIRADS score were potential risk predictors of csPCa, and the nomogram was developed based on these factors. The area under the curve (AUC) of the training cohort and validation cohort was 0.884 (95% CI: 0.862-0.906) and 0.899 (95% CI: 0.867-0.931). The calibration curves showed that the apparent curves were closer to the ideal curves. The DCA results revealed that the nomogram model seemed to have clinical application value per DCA. Conclusion: The nomogram model can efficiently predict the risk of csPCa and may assist clinicians in determining if a prostate biopsy is necessary.


Assuntos
Nomogramas , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Antígeno Prostático Específico , Biópsia , Inflamação/diagnóstico por imagem , Estudos Retrospectivos
15.
Environ Pollut ; 319: 121014, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608727

RESUMO

Zero-valent iron (Fe) is commonly employed as an additive for the mechanochemical destruction (MCD) of organic pollutants. The poly- and perfluoroalkyl substances (e.g., perfluorooctane sulfonate, PFOS) are a class of toxic environmental pollutants that are difficult to effectively degrade due to their thermodynamic and chemical stability. In this study, magnetite (Fe3O4) was applied to improve the milling performance of Fe to PFOS and its promoting mechanisms were emphatically explored. The desulfurization rate was in ahead of the defluorination rate because the C-S bond is less stable than the C-F bonds in PFOS. Fe3O4 had an excellent reinforcement effect on the milling performance of Fe, which was mainly through accelerating the electron transfer as a conductor, reacting with Fe to produce FeO, and facilitating the formation of HO●. During the MCD of PFOS with Fe/Fe3O4 as an additive, HO● played a dominant role in the defluorination process (accounting for >67%). After the elimination of sulfonate group (-SO3-), the produced radical (C7F15CF2●) continued to react through two main pathways: one was the stepwise defluorination after hydrogenation, and the other one was oxidation reaction after alcoholization to yield the corresponding aldehydes and carboxylic acids. The optimum Fe fraction (MFe) was 30%, and air atmosphere was more effective than oxygen and nitrogen conditions. This study helps to comprehensively understand the role of Fe3O4 in defluorination and fills the gap of Fe/Fe3O4 application in the MCD of PFASs.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Ferro/química , Óxido Ferroso-Férrico , Ácidos Alcanossulfônicos/química , Fluorocarbonos/química , Poluentes Ambientais/química
16.
ACS Chem Neurosci ; 13(23): 3464-3476, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36441909

RESUMO

The P2X7 receptor (P2X7R) is a key neuroinflammation target in a variety of neurodegenerative diseases. Improved radiosynthesis was developed according to the previously reported P2X7R antagonist GSK1482160. Biodistribution, radiometabolite, and dynamic positron emission tomography/computed tomography-magnetic resonance imaging (PET/CT-MRI) of the lipopolysaccharide (LPS) rat model and the transgenic mouse model of Alzheimer's disease (AD) revealed a stable, low uptake of [18F]4A in the brain of healthy rats but a higher standardized uptake value ratio (SUVR) in LPS-treated rats (1.316 ± 0.062, n = 3) than in sham (1.093 ± 0.029, n = 3). There were higher area under curves (AUCs) in the neocortex (25.12 ± 1.11 vs 18.94 ± 1.47), hippocampus (22.50 ± 3.41 vs 15.90 ± 1.59), and basal ganglia (22.26 ± 0.81 vs 15.32 ± 1.76) of AD mice (n = 3) than the controls (n = 3) (p < 0.05). Furthermore, 50 min dynamic PET in healthy nonhuman primates (NHPs) indicated [18F]4A could penetrate the blood-brain barrier (BBB). In conclusion, [18F]4A from this study is a potent P2X7R PET tracer that warrants further neuroinflammation quantification in human studies.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptores Purinérgicos P2X7 , Animais , Camundongos , Ratos , Distribuição Tecidual
17.
Bioorg Med Chem ; 73: 116996, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126443

RESUMO

The purinergic P2X7 receptor (P2X7R), an ATP gated ion channel, is an important therapeutic target for various inflammatory immune and neurodegenerative diseases. A novel P2X7R targeting radiotracer GSK1482160 was radiosynthesized by hetero-aryl bromides precursor 10 with [18F]Et4NF, 20-30 % radiochemical yield, > 68 GBq/µmol specific activity, >98 % radiochemical purity. Evaluation in healthy male Sprague-Dawley rats revealed that [18F]GSK1482160 ([18F]11) was stably retained 87.81 %, 72.45 %, and 56.32 % in brain, blood and liver respectively 60-min post-injection. Ex-vivo biodistribution of [18F]11 proved that it was able to target the P2X7R in vivo and there was no defluorination in the major organs. PET/MRI imaging and autoradiography revealed that [18F]11 was able to penetrate the blood-brain barrier (BBB) and to be a promising P2X7R PET radioligand for clinical translation.


Assuntos
Brometos , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina , Animais , Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor , Masculino , Tomografia por Emissão de Pósitrons/métodos , Ácido Pirrolidonocarboxílico , Compostos Radiofarmacêuticos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
18.
Mol Pharm ; 19(11): 4264-4274, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36067000

RESUMO

Tracking the pathogen of coronavirus disease 2019 (COVID-19) in live subjects may help estimate the spatiotemporal distribution of SARS-CoV-2 infection in vivo. This study developed a positron emission tomography (PET) tracer of the S2 subunit of spike (S) protein for imaging SARS-CoV-2. A pan-coronavirus inhibitor, EK1 peptide, was synthesized and radiolabeled with copper-64 after being conjugated with 1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid (NOTA). The in vitro stability tests indicated that [64Cu]Cu-NOTA-EK1 was stable up to 24 h both in saline and in human serum. The binding assay showed that [64Cu]Cu-NOTA-EK1 has a nanomolar affinity (Ki = 3.94 ± 0.51 nM) with the S-protein of SARS-CoV-2. The cell uptake evaluation used HEK293T/S+ and HEK293T/S- cell lines that showed that the tracer has a high affinity with the S-protein on the cellular level. For the in vivo study, we tested [64Cu]Cu-NOTA-EK1 in HEK293T/S+ cell xenograft-bearing mice (n = 3) and pseudovirus of SARS-CoV-2-infected HEK293T/ACE2 cell bearing mice (n = 3). The best radioactive xenograft-to-muscle ratio (X/Nxenograft 8.04 ± 0.99, X/Npseudovirus 6.47 ± 0.71) was most evident 4 h postinjection. Finally, PET imaging in the surrogate mouse model of beta-coronavirus, mouse hepatic virus-A59 infection in C57BL/6 J mice showed significantly enhanced accumulation in the liver than in the uninfected mice (1.626 ± 0.136 vs 0.871 ± 0.086 %ID/g, n = 3, P < 0.05) at 4 h postinjection. In conclusion, our experimental results demonstrate that [64Cu]Cu-NOTA-EK1 is a potential molecular imaging probe for tracking SARS-CoV-2 in extrapulmonary infections in living subjects.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Células HEK293 , COVID-19/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Radioisótopos de Cobre/química , Tomografia por Emissão de Pósitrons/métodos , Sondas Moleculares , Linhagem Celular Tumoral
19.
Mol Imaging Biol ; 24(6): 909-919, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35705779

RESUMO

PURPOSE: Sigma-1 receptor (Sig-1R), a chaperone that resides at the mitochondrion-associated endoplasmic reticulum (ER) membrane, is an ER stress biomarker. It is thought that ER stress plays a critical role in the progression of metabolic-associated fatty liver disease (MAFLD). The aim of this study was to evaluate a positron emission tomography (PET) tracer [18F]F-TZ3108 targeting Sig-1R for MAFLD. PROCEDURES: The mouse model of MAFLD was established by feeding high-fat diet (HFD) for 12 weeks. Dynamic (0-60 min) PET/CT scans were performed after intravenous injection of 2-deoxy-2[18F]fluoro-D-glucose ([18F]-FDG) and [18F]F-TZ3108. Tracer kinetic modeling was performed for quantification of the PET/CT imaging of the liver. Post-PET biodistribution, the liver tissue western blotting (WB), and immunofluorescence (IF) were performed to compare the expression of Sig-1R levels in the organs harvested from both MAFLD and age-matched control mice. RESULTS: The micro PET/CT imaging revealed a significantly decreased uptake of [18F]F-TZ3108 in the livers of the MAFLD group compared to the healthy controls, while the uptake of [18F]-FDG in the livers was not significantly different between the two groups. Based on the tracer kinetic modeling, the binding disassociate rate (k4) for [18F]F-TZ3108 was significantly increased in MAFLD group compared to healthy controls. The volume distribution (VT), and the non-displacement binding potential (BPND) revealed significantly decrease in MAFLD compared to healthy controls respectively. The post-PET biodistribution (%ID/g) of [18F]F-TZ3108 in the livers of MAFLD mice was significantly reduced nearly twofold than that in the livers of control mice. WB and IF experiments further confirmed the reduction of Sig-1R expression in the MAFLD group. CONCLUSIONS: The expression of Sig-1R in the liver, measured by the PET tracer, [18F]F-TZ3108, was significantly decreased in mouse model of MAFLD. The [18F]F-TZ3108 PET/CT imaging may provide a novel means of visualization for ER stress in MAFLD or other diseases in vivo.


Assuntos
Fluordesoxiglucose F18 , Hepatopatias , Animais , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos
20.
Urol Case Rep ; 43: 102107, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35586399

RESUMO

Penile neoplasm is uncommon, and multiple penile schwannomas are even rarer. We report a case of a 37-year-old man with multiple schwannomas on the left side of the penis, which had been present for more than 10 years without significant enlargement during erection and had recently been associated with mild pain. Ultrasonography revealed several subcutaneous heterogeneous hypoechoic of penile, the larger of which was approximately 1.9 × 0.9 cm. The patient underwent penile mass excision, and pathology and immunohistochemistry confirmed that it was schwannoma. The patient was followed up for 3 years without recurrence or metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...